admin管理员组

文章数量:1559102

面部表情识别1:表情识别数据集(含下载链接)

目录

面部表情识别1:表情识别数据集(含下载链接)

1.前言

2.表情识别数据集介绍

1.jaffe数据集

2.kdef(karolinska directed emotional faces)数据集

3.genki数据集

4.rafd数据集

5.cohn-kanade au-coded expression database数据集

6. fer2013数据集

7. raf(real-world affective faces)数据集

8.emotionet数据集

9.affectnet数据集

3.表情识别数据集(已经清洗)

(1) emotion-domestic国内(亚洲)表情识别数据集

(2) mmafedb表情识别数据集

4.表情识别数据集下载

5.表情识别demo(python版本)

6.表情识别demo(c 版)

7.表情识别demo(android版本)

8.参考资料


1.前言

这是项目《面部表情识别》系列文章之《表情识别数据集(含下载链接)》;我们将分享多个表情识别数据集( facial expression  dataset),数据面部表情丰富多样,包含angry(生气), disgust (厌恶), fear(害怕), happy(快乐), neutral (中性), sad(悲伤), surprise(惊奇)等多种表情

 【尊重原创,转载请注明出处】  https://blog.csdn/guyuealian/article/details/129428657


  更多项目《年龄性别预测》和《面部表情识别》系列文章请参考:

  1. 面部表情识别1:表情识别数据集(含下载链接)
  2. 面部表情识别2:pytorch实现表情识别(含表情识别数据集和训练代码)
  3. 面部表情识别3:android实现表情识别(含源码,可实时检测)
  4. 面部表情识别4:c 实现表情识别(含源码,可实时检测)
  5. 年龄性别预测1:年龄性别数据集说明(含下载地址)https://blog.csdn/guyuealian/article/details/135127124
  6. 年龄性别预测2:pytorch实现年龄性别预测和识别(含训练代码和数据)https://blog.csdn/guyuealian/article/details/135556789
  7. 年龄性别预测3:android实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn/guyuealian/article/details/135556824
  8. 年龄性别预测4:c/c 实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn/guyuealian/article/details/135556843

2.表情识别数据集介绍

1.jaffe数据集

the japanese female facial expression (jaffe) dataset | zenodo

⼀共有213张图像,10个⼈每⼈做出7种表情,这7种表情分别是难过(sad)、⾼兴
(happy)、⽣⽓(angry)、厌恶(disgust)、惊讶(surprise)、害怕(fear)、中⽴
(neutral),每组⼤概20张样图

2.kdef(karolinska directed emotional faces)数据集

the karolinska directed emotional faces (kdef) – emotion lab at karolinska institutet

这个数据集包含70个⼈,共35个男性和35个⼥性,年龄在20~30岁;没有胡须、⽿环或眼镜, 并且没有明显的化妆;7种不同的表情,每个表情有5个⻆度。该数据集总共有4900张彩⾊图,尺⼨ 为562×762像素

3.genki数据集

machine perception laboratory

包含genki-r2009a、genki-4k、genki-szsl⼏个部分
>> genki-r2009a包含11 159张图像,genki-4k包含4000张图像,分为“笑”和“不笑”两种,每张图像拥有不同的尺度⼤⼩、姿势、 光照变化、头部姿态,可专⻔⽤于做笑脸识别。这些图像包括⼴泛的背景、光照条件、地理位置、 个⼈身份和种族等信息

4.rafd数据集

http://www.socsci.ru.nl:8180/rafd2/rafd?p=main

是⼀个⾼质量的脸部数据库,总共包含67个模特,其中有20个⽩⼈男性成年⼈、19个⽩⼈⼥性成年⼈、4个⽩⼈男孩、6个⽩⼈⼥孩和18个摩洛哥男性成年⼈。该数据集总共8040张图,包含8种 表情,即愤怒、厌恶、恐惧、快乐、悲伤、惊奇、蔑视和中⽴。每个表情包含3个不同的注视⽅ 向,并且使⽤5个相机从不同的⻆度同时拍摄。

5.cohn-kanade au-coded expression database数据集

http://www.pitt.edu/~emotion/ck-spread.htm

包含137个⼈的不同⼈脸表情视频帧,可以免费获取,包含表情的标注和基本action units的标注

6. fer2013数据集

fer2013 | kaggle

包含共26 190张48×48灰度图,图像的分辨率⽐较低,共7种表情,分别为⽣⽓(anger)、厌恶(disgust)、恐惧(fear)、开⼼(happy)、伤⼼(sad)、惊讶(surprised)、中⽴(normal)

7. raf(real-world affective faces)数据集

real-world affective faces (raf) database

发布于2017年,总共包含29 672张图像,其中,7个基本表情和12个复合表情,⽽且每张图还提供了5个精确的⼈脸关键点,包含年龄范围和性别标注 等

8.emotionet数据集

emotionet challenge

发布于2017年,共950 000张图,其中包含基本表情、复合表情,以及表情单元的标注

9.affectnet数据集

affectnet – mohammad h. mahoor, phd

超过42万张图,affectnet数据集的标注类型包括表情类型和幅度,其中表情类型包括中⽴、⾼兴、悲伤、惊讶、害怕、厌恶、愤怒和轻蔑8种基本表情,以及⽆表情、不确定和⽆⼈脸。


3.表情识别数据集(已经清洗)

上面提到的几个数据集,几乎都是国外欧美人脸表情数据,还有很多是灰度图,数据也不干净,存在很多错误的标签;考虑到很多国内业务的表情识别,需要用到国内(亚洲)表情识别数据集,项目整理了2个表情识别数据集

(1) emotion-domestic国内(亚洲)表情识别数据集

emotion-domestic表情识别数据主要来源于网络视频图片,采集的人脸主要是国内的一些名人明星的人脸图像,还有部分是整合了人脸识别的人脸数据集。已经做了数据集清洗,质量还比较高;总数约5万 张图片,其中训练集train约49000张人脸图片,测试集约5000张人脸图片,共有7个表情类别:angry(生气), disgust (厌恶), fear(害怕), happy(快乐), neutral (中性), sad(悲伤), surprise(惊奇)

训练集测试集

下图是7个表情类别的样图:

表情样图
angry(生气)
disgust (厌恶)
fear(害怕)
happy(快乐)
neutral (中性)
sad(悲伤)
surprise(惊奇)

(2) mmafedb表情识别数据集

mma facial expression(mmafedb)表情识别数据集,大部分是欧美人脸表情数据,共有三个子集:train(训练集),valid(验证集)和测试集(test),总数据量超过12万张图片,其中训练集含有92968张人脸图片,验证集17356张人脸图片,测试集17356张人脸图片,共有7个类别:angry(生气), disgust (厌恶), fear(害怕), happy(快乐), neutral (中性), sad(悲伤), surprise(惊奇)


4.表情识别数据集下载

上面表情识别数据集大部分都已经给出了官方的下载链接,网友可自行到九游会真人第一品牌官网注册或者申请下载。这里只给出两个鄙人已经整合的表情识别数据集:(1)emotion-domestic国内(亚洲)表情识别数据集(2)mmafedb表情识别数据集,数据集下载地址:面部表情识别1:表情识别数据集(含下载链接)

(1)emotion-domestic国内(亚洲)表情识别数据集

  1. 属于国内(亚洲)表情识别数据集
  2. 总数约5万 张图片,其中训练集train约49000张人脸图片,测试集约5000张人脸图片,
  3. 共有7个表情类别:angry(生气), disgust (厌恶), fear(害怕), happy(快乐), neutral (中性), sad(悲伤), surprise(惊奇)
  4. 已经做了部分数据清洗,可直接用于表情识别分类模型训练;

(2)mmafedb表情识别数据集

  1. 属于欧美表情识别数据集
  2. 共有三个子集:train(训练集),valid(验证集)和测试集(test),总数据量超过12万张图片,其中训练集含有92968张人脸图片,验证集17356张人脸图片,测试集17356张人脸图片,
  3. 共有7个类别:angry(生气), disgust (厌恶), fear(害怕), happy(快乐), neutral (中性), sad(悲伤), surprise(惊奇)
  4. 已经做了部分数据清洗,可直接用于表情识别分类模型训练;

5.表情识别demo(python版本)

请参考:面部表情识别2:pytorch实现表情识别(含表情识别数据集和训练代码)

6.表情识别demo(c 版)

面部表情识别4:c 实现表情识别(含源码,可实时检测)

7.表情识别demo(android版本)

请参考:面部表情识别3:android实现表情识别(含源码,可实时检测)

 


8.参考资料

  1. 【笔记】人脸处理相关数据集

本文标签: 下载链接